Unix/Linux系統調用
accept()函數 Unix/Linux
access()函數 Unix/Linux
acct()函數 Unix/Linux
add_key()函數 Unix/Linux
adjtimex()函數 Unix/Linux
afs_syscall()函數 Unix/Linux
alarm()函數 Unix/Linux
alloc_hugepages()函數 Unix/Linux
arch_prctl()函數 Unix/Linux
bdflush()函數 Unix/Linux
bind()函數 Unix/Linux
break未實現 Unix/Linux
brk()函數 Unix/Linux
cacheflush()函數 Unix/Linux
chdir()函數 Unix/Linux
chmod()函數 Unix/Linux
chown()函數 Unix/Linux
chroot()函數 Unix/Linux
clone()函數 Unix/Linux
close()函數 Unix/Linux
connect()函數 Unix/Linux
create_module()函數 Unix/Linux
open()函數 Unix/Linux
dup2()函數 Unix/Linux
dup()函數 Unix/Linux
epoll_create()函數 Unix/Linux
epoll_ctl()函數 Unix/Linux
epoll_wait()函數 Unix/Linux
execve()函數 Unix/Linux
exit_group函數 Unix/Linux
_exit()函數 Unix/Linux
exit()函數 Unix/Linux
faccessat()函數 Unix/Linux
fattach()函數 Unix/Linux
fchdir()函數 Unix/Linux
fchmodat()函數 Unix/Linux
fchmod()函數 Unix/Linux
fchownat()函數 Unix/Linux
fchown()函數 Unix/Linux
fcntl()函數 Unix/Linux
fdatasync()函數 Unix/Linux
fdetach()函數 Unix/Linux
flock()函數 Unix/Linux
fork()函數 Unix/Linux
alloc_hugepages()函數 Unix/Linux
fstatat()函數 Unix/Linux
statfs()函數 Unix/Linux
stat()函數 Unix/Linux
statvfs()函數 Unix/Linux
fsync()函數 Unix/Linux
truncate()函數 Unix/Linux
futex()函數 Unix/Linux
futimesat()函數 Unix/Linux
getcontext()函數 Unix/Linux
getcwd()函數 Unix/Linux
getdents()函數 Unix/Linux
getdomainname()函數 Unix/Linux
getdtablesize()函數 Unix/Linux
getgid()函數 Unix/Linux
getuid()函數 Unix/Linux
getgroups()函數 Unix/Linux
getgroups()函數 Unix/Linux
gethostname()函數 Unix/Linux
getitimer()函數 Unix/Linux
get_kernel_syms()函數 Unix/Linux
unimplemented()函數 Unix/Linux
getpagesize()函數 Unix/Linux
getpeername()函數 Unix/Linux
setpgid()函數 Unix/Linux
getpgrp()函數 Unix/Linux
getpid()函數 Unix/Linux
getpmsg()函數 Unix/Linux
getppid()函數 Unix/Linux
getpriority()函數 Unix/Linux
getresuid()函數 Unix/Linux
getrlimit()函數 Unix/Linux
get_robust_list()函數 Unix/Linux
getrusage()函數 Unix/Linux
getsid()函數 Unix/Linux
getsockname()函數 Unix/Linux
getsockopt()函數 Unix/Linux
get_thread_area()函數 Unix/Linux
gettid()函數 Unix/Linux
gettimeofday()函數 Unix/Linux
getuid()函數 Unix/Linux
getunwind()函數 Unix/Linux
gtty()函數 Unix/Linux
idle()函數 Unix/Linux
outb()函數 Unix/Linux
inb_p()函數 Unix/Linux
inl()函數 Unix/Linux
inl_p()函數 Unix/Linux
inotify_add_watch()函數 Unix/Linux
inotify_init()函數 Unix/Linux
inotify_rm_watch()函數 Unix/Linux
outb()函數 Unix/Linux
insl()函數 Unix/Linux
insw()函數 Unix/Linux
intro()函數 Unix/Linux
inw()函數 Unix/Linux
inw_p()函數 Unix/Linux
io_cancel()函數 Unix/Linux
ioctl()函數 Unix/Linux
ioctl_list()函數 Unix/Linux
io_destroy()函數 Unix/Linux
io_getevents()函數 Unix/Linux
ioperm()函數 Unix/Linux
iopl()函數 Unix/Linux
ioprio_set()函數 Unix/Linux
io_setup()函數 Unix/Linux
io_submit()函數 Unix/Linux
ipc()函數 Unix/Linux
isastream()函數 Unix/Linux
kexec_load()函數 Unix/Linux
keyctl()函數 Unix/Linux
kill()函數 Unix/Linux
killpg()函數 Unix/Linux
lchown()函數 Unix/Linux
linkat()函數 Unix/Linux
link()函數 Unix/Linux
listen()函數 Unix/Linux
_llseek()函數 Unix/Linux
llseek()函數 Unix/Linux
lock()函數 Unix/Linux
lookup_dcookie()函數 Unix/Linux
lseek()函數 Unix/Linux
lstat()函數 Unix/Linux
madvise()函數 Unix/Linux
mincore()函數 Unix/Linux
mkdirat()函數 Unix/Linux
mkdir()函數 Unix/Linux
mknod()函數 Unix/Linux
mlockall()函數 Unix/Linux
mlock()函數 Unix/Linux
mmap2()函數 Unix/Linux
mmap()函數 Unix/Linux
modify_ldt()函數 Unix/Linux
mount()函數 Unix/Linux
move_pages()函數 Unix/Linux
mprotect()函數 Unix/Linux
mpx()函數 Unix/Linux
mq_getsetattr()函數 Unix/Linux
mremap()函數 Unix/Linux
msgctl()函數 Unix/Linux
msgget()函數 Unix/Linux
msgop()函數 Unix/Linux
msgsnd()函數 Unix/Linux
msync()函數 Unix/Linux
multiplexer()函數 Unix/Linux
munlockall()函數 Unix/Linux
munlock()函數 Unix/Linux
munmap()函數 Unix/Linux
nanosleep()函數 Unix/Linux
_newselect()函數 Unix/Linux
nfsservctl()函數 Unix/Linux
nice()函數 Unix/Linux
obsolete()函數 Unix/Linux
oldfstat()函數 Unix/Linux
oldlstat()函數 Unix/Linux
oldolduname()函數 Unix/Linux
oldstat()函數 Unix/Linux
olduname()函數 Unix/Linux
openat()函數 Unix/Linux
open()函數 Unix/Linux
outb()函數 Unix/Linux
outb_p()函數 Unix/Linux
outsb()函數 Unix/Linux
outsl()函數 Unix/Linux
outsw()函數 Unix/Linux
outw()函數 Unix/Linux
outw_p()函數 Unix/Linux
path_resolution()函數 Unix/Linux
pause()函數 Unix/Linux
perfmonctl()函數 Unix/Linux
personality()函數 Unix/Linux
pipe()函數 Unix/Linux
pivot_root()函數 Unix/Linux
poll()函數 Unix/Linux
posix_fadvise()函數 Unix/Linux
ppoll()函數 Unix/Linux
prctl()函數 Unix/Linux
pread()函數 Unix/Linux
prof()函數 Unix/Linux
pselect()函數 Unix/Linux
ptrace()函數 Unix/Linux
putmsg()函數 Unix/Linux
putpmsg()函數 Unix/Linux
pwrite()函數 Unix/Linux
query_module()函數 Unix/Linux
quotactl()函數 Unix/Linux
readahead()函數 Unix/Linux
readdir()函數 Unix/Linux
read()函數 Unix/Linux
readlinkat()函數 Unix/Linux
readlink()函數 Unix/Linux
readv()函數 Unix/Linux
reboot()函數 Unix/Linux
recvfrom()函數 Unix/Linux
recv()函數 Unix/Linux
recvmsg()函數 Unix/Linux
remap_file_pages()函數 Unix/Linux
renameat()函數 Unix/Linux
rename()函數 Unix/Linux
request_key()函數 Unix/Linux
rmdir()函數 Unix/Linux
sbrk()函數 Unix/Linux
sched_setaffinity()函數 Unix/Linux
sched_getparam()函數 Unix/Linux
sched_get_priority_max()函數 Unix/Linux
sched_get_priority_min()函數 Unix/Linux
sched_setscheduler()函數 Unix/Linux
sched_rr_get_interval()函數 Unix/Linux
sched_setparam()函數 Unix/Linux
sched_yield()函數 Unix/Linux
security()函數 Unix/Linux
select()函數 Unix/Linux
select_tut()函數 Unix/Linux
semctl()函數 Unix/Linux

select_tut()函數 Unix/Linux

select, pselect, FD_CLR, FD_ISSET, FD_SET, FD_ZERO - 同步I / O複用

內容簡介

#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>

int select(int nfds**, fd_set *readfds,** fd_set **writefds*, fd_set **exceptfds*, struct timeval **utimeout*);

int pselect(int nfds**, fd_set *readfds,** fd_set **writefds*, fd_set **exceptfds*, const struct timespec **ntimeout*, sigset_t **sigmask*);

FD_CLR(int fd**, fd_set *set);** 
FD_ISSET(int fd**, fd_set *set);** 
FD_SET(int fd**, fd_set *set);** 
FD_ZERO(fd_set **set*);

描述

select() (or pselect()) is the pivot function of most C programs that handle more than one simultaneous file descriptor (or socket handle) in an efficient manner. Its principal arguments are three arrays of file descriptors: readfdswritefds, and exceptfds. The way that select() is usually used is to block while waiting for a "change of status" on one or more of the file descriptors. A "change of status" is when more characters become available from the file descriptor, or when space becomes available within the kernel’s internal buffers for more to be written to the file descriptor, or when a file descriptor goes into error (in the case of a socket or pipe this is when the other end of the connection is closed).

In summary, select() just watches multiple file descriptors, and is the standard Unix call to do so.

The arrays of file descriptors are called file descriptor sets. Each set is declared as typefd_set, and its contents can be altered with the macros FD_CLR(), FD_ISSET(),FD_SET(), and FD_ZERO(). FD_ZERO() is usually the first function to be used on a newly declared set. Thereafter, the individual file descriptors that you are interested in can be added one by one with FD_SET(). select() modifies the contents of the sets according to the rules described below; after calling select() you can test if your file descriptor is still present in the set with the FD_ISSET() macro. FD_ISSET() returns non-zero if the descriptor is present and zero if it is not. FD_CLR() removes a file descriptor from the set.

ARGUMENTS

標籤

描述

readfds

 

This set is watched to see if data is available for reading from any of its file descriptors. After select() has returned, readfds will be cleared of all file descriptors except for those file descriptors that are immediately available for reading with a recv() (for sockets) or read() (for pipes, files, and sockets) call.

writefds

 

This set is watched to see if there is space to write data to any of its file descriptors. After select() has returned, writefds will be cleared of all file descriptors except for those file descriptors that are immediately available for writing with a send() (for sockets) or write() (for pipes, files, and sockets) call.

exceptfds

 

This set is watched for exceptions or errors on any of the file descriptors. However, that is actually just a rumor. How you useexceptfds is to watch for out-of-band (OOB) data. OOB data is data sent on a socket using the MSG_OOB flag, and henceexceptfds only really applies to sockets. See recv(2) and send(2) about this. After select() has returned, exceptfds will be cleared of all file descriptors except for those descriptors that are available for reading OOB data. You can only ever read one byte of OOB data though (which is done with recv()), and writing OOB data (done with send()) can be done at any time and will not block. Hence there is no need for a fourth set to check if a socket is available for writing OOB data.

nfds

This is an integer one more than the maximum of any file descriptor in any of the sets. In other words, while you are busy adding file descriptors to your sets, you must calculate the maximum integer value of all of them, then increment this value by one, and then pass this as nfds to select().

utimeout

 

This is the longest time select() must wait before returning, even if nothing interesting happened. If this value is passed as NULL, then select() blocks indefinitely waiting for an event.utimeout can be set to zero seconds, which causes select() to return immediately. The structure struct timeval is defined as,

struct timeval {
time_t tv_sec; /* seconds */
long tv_usec; /* microseconds */
};

ntimeout

 

This argument has the same meaning as utimeout but struct timespec has nanosecond precision as follows,

struct timespec {
long tv_sec; /* seconds */
long tv_nsec; /* nanoseconds */
};

sigmask

 

This argument holds a set of signals to allow while performing apselect() call (see sigaddset(3) and sigprocmask(2)). It can be passed as NULL, in which case it does not modify the set of allowed signals on entry and exit to the function. It will then behave just like select().

COMBINING SIGNAL AND DATA EVENTS

pselect () must be used if you are waiting for a signal as well as data from a file descriptor. Programs that receive signals as events normally use the signal handler only to raise a global flag. The global flag will indicate that the event must be processed in the main loop of the program. A signal will cause the  select () (or  pselect ()) call to return with  errno  set to  EINTR . This behavior is essential so that signals can be processed in the main loop of the program, otherwise  select () would block indefinitely. Now, somewhere in the main loop will be a conditional to check the global flag. So we must ask: what if a signal arrives after the conditional, but before the  select () call? The answer is that  select () would block indefinitely, even though an event is actually pending. This race condition is solved by the  pselect () call. This call can be used to mask out signals that are not to be received except within the  pselect () call. For instance, let us say that the event in question was the exit of a child process. Before the start of the main loop, we would block  SIGCHLD  using  sigprocmask (). Our  pselect () call would enable  SIGCHLD  by using the virgin signal mask. Our program would look like:

int child_events = 0;

void child_sig_handler (int x) {
child_events++;
signal (SIGCHLD, child_sig_handler);
}

int main (int argc, char **argv) {
sigset_t sigmask, orig_sigmask;

sigemptyset (&sigmask);
sigaddset (&sigmask, SIGCHLD);
sigprocmask (SIG\_BLOCK, &sigmask,
                            &orig\_sigmask);


signal (SIGCHLD, child\_sig\_handler);


for (;;) { /\* main loop \*/
    for (; child\_events > 0; child\_events--) {
        /\* do event work here \*/
    }
    r = pselect (nfds, &rd, &wr, &er, 0, &orig\_sigmask);


    /\* main body of program \*/
}

}

實用

So what is the point of  select ()? Can’t I just read and write to my descriptors whenever I want? The point of  select () is that it watches multiple descriptors at the same time and properly puts the process to sleep if there is no activity. It does this while enabling you to handle multiple simultaneous pipes and sockets. Unix programmers often find themselves in a position where they have to handle I/O from more than one file descriptor where the data flow may be intermittent. If you were to merely create a sequence of  read () and  write () calls, you would find that one of your calls may block waiting for data from/to a file descriptor, while another file descriptor is unused though available for data.  select () efficiently copes with this situation.

A simple example of the use of select() can be found in the select(2) manual page.

PORT FORWARDING EXAMPLE

Here is an example that better demonstrates the true utility of  select (). The listing below is a TCP forwarding program that forwards from one TCP port to another.

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/time.h>
#include <sys/types.h>
#include <string.h>
#include <signal.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <errno.h>
static int forward_port;

#undef max
#define max(x,y) ((x) > (y) ? (x) : (y))

static int listen_socket (int listen_port) {
struct sockaddr_in a;
int s;
int yes;
if ((s = socket (AF_INET, SOCK_STREAM, 0)) < 0) {
perror ("socket");
return -1;
}
yes = 1;
if (setsockopt
(s, SOL_SOCKET, SO_REUSEADDR,
(char *) &yes, sizeof (yes)) < 0) {
perror ("setsockopt");
close (s);
return -1;
}
memset (&a, 0, sizeof (a));
a.sin_port = htons (listen_port);
a.sin_family = AF_INET;
if (bind
(s, (struct sockaddr *) &a, sizeof (a)) < 0) {
perror ("bind");
close (s);
return -1;
}
printf ("accepting connections on port %d\n",
(int) listen_port);
listen (s, 10);
return s;
}

static int connect_socket (int connect_port,
char *address) {
struct sockaddr_in a;
int s;
if ((s = socket (AF_INET, SOCK_STREAM, 0)) < 0) {
perror ("socket");
close (s);
return -1;
}

memset (&a, 0, sizeof (a));
a.sin\_port = htons (connect\_port);
a.sin\_family = AF\_INET;


if (!inet\_aton
    (address,
     (struct in\_addr \*) &a.sin\_addr.s\_addr)) {
    perror ("bad IP address format");
    close (s);
    return -1;
}


if (connect
    (s, (struct sockaddr \*) &a,
     sizeof (a)) < 0) {
    perror ("connect()");
    shutdown (s, SHUT\_RDWR);
    close (s);
    return -1;
}
return s;

}

#define SHUT_FD1 { \
if (fd1 >= 0) { \
shutdown (fd1, SHUT_RDWR); \
close (fd1); \
fd1 = -1; \
} \
}

#define SHUT_FD2 { \
if (fd2 >= 0) { \
shutdown (fd2, SHUT_RDWR); \
close (fd2); \
fd2 = -1; \
} \
}

#define BUF_SIZE 1024

int main (int argc, char **argv) {
int h;
int fd1 = -1, fd2 = -1;
char buf1[BUF_SIZE], buf2[BUF_SIZE];
int buf1_avail, buf1_written;
int buf2_avail, buf2_written;

if (argc != 4) {
    fprintf (stderr,
             "Usage\\n\\tfwd 

\

\\n"); exit (1); } signal (SIGPIPE, SIG\_IGN); forward\_port = atoi (argv\[2\]); h = listen\_socket (atoi (argv\[1\])); if (h < 0) exit (1); for (;;) { int r, nfds = 0; fd\_set rd, wr, er; FD\_ZERO (&rd); FD\_ZERO (&wr); FD\_ZERO (&er); FD\_SET (h, &rd); nfds = max (nfds, h); if (fd1 > 0 && buf1\_avail < BUF\_SIZE) { FD\_SET (fd1, &rd); nfds = max (nfds, fd1); } if (fd2 > 0 && buf2\_avail < BUF\_SIZE) { FD\_SET (fd2, &rd); nfds = max (nfds, fd2); } if (fd1 > 0 && buf2\_avail - buf2\_written > 0) { FD\_SET (fd1, &wr); nfds = max (nfds, fd1); } if (fd2 > 0 && buf1\_avail - buf1\_written > 0) { FD\_SET (fd2, &wr); nfds = max (nfds, fd2); } if (fd1 > 0) { FD\_SET (fd1, &er); nfds = max (nfds, fd1); } if (fd2 > 0) { FD\_SET (fd2, &er); nfds = max (nfds, fd2); } r = select (nfds + 1, &rd, &wr, &er, NULL); if (r == -1 && errno == EINTR) continue; if (r < 0) { perror ("select()"); exit (1); } if (FD\_ISSET (h, &rd)) { unsigned int l; struct sockaddr\_in client\_address; memset (&client\_address, 0, l = sizeof (client\_address)); r = accept (h, (struct sockaddr \*) &client\_address, &l); if (r < 0) { perror ("accept()"); } else { SHUT\_FD1; SHUT\_FD2; buf1\_avail = buf1\_written = 0; buf2\_avail = buf2\_written = 0; fd1 = r; fd2 = connect\_socket (forward\_port, argv\[3\]); if (fd2 < 0) { SHUT\_FD1; } else printf ("connect from %s\\n", inet\_ntoa (client\_address.sin\_addr)); } } /\* NB: read oob data before normal reads \*/ if (fd1 > 0) if (FD\_ISSET (fd1, &er)) { char c; errno = 0; r = recv (fd1, &c, 1, MSG\_OOB); if (r < 1) { SHUT\_FD1; } else send (fd2, &c, 1, MSG\_OOB); } if (fd2 > 0) if (FD\_ISSET (fd2, &er)) { char c; errno = 0; r = recv (fd2, &c, 1, MSG\_OOB); if (r < 1) { SHUT\_FD1; } else send (fd1, &c, 1, MSG\_OOB); } if (fd1 > 0) if (FD\_ISSET (fd1, &rd)) { r = read (fd1, buf1 + buf1\_avail, BUF\_SIZE - buf1\_avail); if (r < 1) { SHUT\_FD1; } else buf1\_avail += r; } if (fd2 > 0) if (FD\_ISSET (fd2, &rd)) { r = read (fd2, buf2 + buf2\_avail, BUF\_SIZE - buf2\_avail); if (r < 1) { SHUT\_FD2; } else buf2\_avail += r; } if (fd1 > 0) if (FD\_ISSET (fd1, &wr)) { r = write (fd1, buf2 + buf2\_written, buf2\_avail - buf2\_written); if (r < 1) { SHUT\_FD1; } else buf2\_written += r; } if (fd2 > 0) if (FD\_ISSET (fd2, &wr)) { r = write (fd2, buf1 + buf1\_written, buf1\_avail - buf1\_written); if (r < 1) { SHUT\_FD2; } else buf1\_written += r; } /\* check if write data has caught read data \*/ if (buf1\_written == buf1\_avail) buf1\_written = buf1\_avail = 0; if (buf2\_written == buf2\_avail) buf2\_written = buf2\_avail = 0; /\* one side has closed the connection, keep writing to the other side until empty \*/ if (fd1 < 0 && buf1\_avail - buf1\_written == 0) { SHUT\_FD2; } if (fd2 < 0 && buf2\_avail - buf2\_written == 0) { SHUT\_FD1; } } return 0; } 

vetica, arial, sans-serif; color: rgb(0, 0, 0);"> The above program properly forwards most kinds of TCP connections including OOB signal data transmitted by  telnet servers. It handles the tricky problem of having data flow in both directions simultaneously. You might think it more efficient to use a  fork() call and devote a thread to each stream. This becomes more tricky than you might suspect. Another idea is to set non-blocking I/O using an  ioctl() call. This also has its problems because you end up having to have inefficient timeouts.

The program does not handle more than one simultaneous connection at a time, although it could easily be extended to do this with a linked list of buffers — one for each connection. At the moment, new connections cause the current connection to be dropped.

SELECT LAW

Many people who try to use  select () come across behavior that is difficult to understand and produces non-portable or borderline results. For instance, the above program is carefully written not to block at any point, even though it does not set its file descriptors to non-blocking mode at all (see  ioctl (2)). It is easy to introduce subtle errors that will remove the advantage of using  select (), hence I will present a list of essentials to watch for when using the  select () call.

標籤

描述

1.

You should always try to use select() without a timeout. Your program should have nothing to do if there is no data available. Code that depends on timeouts is not usually portable and is difficult to debug.

2.

The value nfds must be properly calculated for efficiency as explained above.

3.

No file descriptor must be added to any set if you do not intend to check its result after the select() call, and respond appropriately. See next rule.

4.

After select() returns, all file descriptors in all sets should be checked to see if they are ready.

5.

The functions read(), recv(), write(), and send() do notnecessarily read/write the full amount of data that you have requested. If they do read/write the full amount, its because you have a low traffic load and a fast stream. This is not always going to be the case. You should cope with the case of your functions only managing to send or receive a single byte.

6.

Never read/write only in single bytes at a time unless your are really sure that you have a small amount of data to process. It is extremely inefficient not to read/write as much data as you can buffer each time. The buffers in the example above are 1024 bytes although they could easily be made larger.

7.

The functions read(), recv(), write(), and send() as well as theselect() call can return -1 with errno set to EINTR, or with errnoset to EAGAIN (EWOULDBLOCK). These results must be properly managed (not done properly above). If your program is not going to receive any signals then it is unlikely you will getEINTR. If your program does not set non-blocking I/O, you will not get EAGAIN. Nonetheless you should still cope with these errors for completeness.

8.

Never call read(), recv(), write(), or send() with a buffer length of zero.

9.

If the functions read(), recv(), write(), and send() fail with errors other than those listed in 7., or one of the input functions returns 0, indicating end of file, then you should not pass that descriptor to select() again. In the above example, I close the descriptor immediately, and then set it to -1 to prevent it being included in a set.

10.

The timeout value must be initialized with each new call toselect(), since some operating systems modify the structure.pselect() however does not modify its timeout structure.

11.

I have heard that the Windows socket layer does not cope with OOB data properly. It also does not cope with select() calls when no file descriptors are set at all. Having no file descriptors set is a useful way to sleep the process with sub-second precision by using the timeout. (See further on.)

USLEEP EMULATION

On systems that do not have a  usleep () function, you can call  select () with a finite timeout and no file descriptors as follows:

struct timeval tv;
tv.tv\_sec = 0;
tv.tv\_usec = 200000;  /\* 0.2 seconds \*/
select (0, NULL, NULL, NULL, &tv);

This is only guaranteed to work on Unix systems, however.

返回值

On success,  select () returns the total number of file descriptors still present in the file descriptor sets.

If select() timed out, then the return value will be zero. The file descriptors set should be all empty (but may not be on some systems).

A return value of -1 indicates an error, with errno being set appropriately. In the case of an error, the returned sets and the timeout struct contents are undefined and should not be used. pselect() however never modifies ntimeout.

注意

Generally speaking, all operating systems that support sockets, also support  select (). Many types of programs become extremely complicated without the use of  select (). select () can be used to solve many problems in a portable and efficient way that naive programmers try to solve in a more complicated manner using threads, forking, IPCs, signals, memory sharing, and so on.

The poll(2) system call has the same functionality as select(), and is somewhat more efficient when monitoring sparse file descriptor sets. It is nowadays widely available, but historically was less portable than select().

The Linux-specific epoll(7) API provides an interface that that is more efficient thanselect(2) and poll(2) when monitoring large numbers of file descriptors.

另請參閱

  • accept (2)

  • connect (2)

  • ioctl (2)

  • poll (2)

  • read (2)

  • recv (2)

  • select (2)

  • send (2)

  • sigprocmask (2)

  • write (2)